The Design of High Power Density Annular Fuel for LWRs

نویسندگان

  • Yi Yuan
  • Jeffrey Coderre
چکیده

Fuel performance models have been developed to assess the performance of internally and externally cooled LWR annular fuel. Such fuel may be operated at 30-50% higher core power density than the current operating LWRs, and to a burnup of 80-100MWd/kgU. The models are used to optimize the fuel design so that it is able to achieve high power density and high burnup, and to identify the features of this fuel that will impact its operation limits. The annular fuel performance codes have been developed based on the NRC licensed FRAPCON-3 code with major modifications to the code structure and with implementation of new fuel performance models. A heat split calculation was enabled by adding a heat flux iteration loop. The radial power peaking and the rim effects at both the inner and outer fuel surfaces have been modeled by a modified radial power/burnup fit to the neutronic calculations. The temperature profile calculation method was updated with new boundary conditions and meshing scheme to capture the internal cooling and the double power peaking at the rims. The annular fuel performance codes are able to simulate both sintered annular fuel and VibrationPacking (VIPAC) fuel with internal and external cooling. For the sintered annular fuel, the anchor ring location of fuel thermal expansion is determined to be the innermost ring, and the fuel dimensions are calculated considering the effects of thermal expansion, swelling and densification. Fuel relocation is assessed via a new empirical model that has been implemented in the code. A fuel cladding mechanical interaction model has been developed with three regimes: the free standing cladding regime, the single closure regime and the fuel cladding full contact regime. The interaction mechanisms for each regime are analyzed and solutions are provided. A low temperature fission gas release model is implemented for sintered annular fuel by taking into account the double surface effects. It is found that the sintered annular fuel rod has lower fission gas release than that of a solid IPWR rod at the same power density. The cladding hydrogen concentration and the oxide accumulation of the annular fuel are comparable to those of the solid fuel due to comparable cladding heat flux and irradiation. Fuel gap conductance asymmetry caused by outward thermal expansion has been identified as a major concern due to its potential effects on NMDNBR. A sensitivity study has been performed to evaluate the impact of fuel parameters on fuel performance. The gap asymmetry problem can be circumvented by combining several approaches including: (1) allowing a larger outer gap and a smaller inner gap, (2) enlarging the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The simulation of novel annular shape on the Performance in Proton Exchange Membrane Fuel Cell

In this article, one-phase and three dimensional computational fluid dynamics analysis was utilized to investigate the effect of annular field pattern of proton exchange membrane fuel cells (PEMFC) with different geometry on the performances and species distribution. This computational fluid dynamics code is used for solving the equation in single domain namely the flow field, the mass conserva...

متن کامل

Optimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids

In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...

متن کامل

Mass Balance of the Pu and Minor Actinides Recycling Metal Fuel System

The mass flow of Plutonium and minor actinides is calculated for a future LWR-FBR fuel cycle model, in which a certain scale of power generation by LWRs is continued for a long period before the replacement by FBRs begins. The burnup of the LWR spent fuel is considered to be higher than the current standard. It is assumed that all the Plutonium and minor actinides recovered from LWRs are kept a...

متن کامل

A technical and economic assessment of fuel oil hydrotreating technology for steam power plant SO2 and NOx emissions control

This work presents a simulation approach to the design and economic evaluation of fuel oil hydrotreating processes for the control of SO2 and NOx emission in an Iranian steam power plant. The percent of fuel oil desulphurization was estimated from the SO2 emissions standards for power plants. Based on two different scenarios according to (I) European and (II) Iranian standards, the design and s...

متن کامل

Pollution reduction and electricity production from dairy industry wastewater with microbial fuel cell

Taguchi L9 orthogonal array was implemented to select optimum values of process parameters and to attain the maximum removal of pollutants and power generation from dairy industry wastewater using double chambered salt bridge microbial fuel cell. The maximum chemical oxygen demand reduction, current, voltage, power, current density and power density in double chambered salt bridge microbial fue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006